Ung thư phổi xếp vị trí thứ 2 trong số các bệnh ung thư mắc nhiều nhất tại Việt Nam. Với khả năng chẩn đoán đồng thời nhiều ca chụp cùng lúc, không giới hạn thời gian, không gian, với tốc độ và độ chính xác không đổi, ứng dụng Trí tuệ nhân tạo (AI) do đó có thể phục vụ sàng lọc trên diện rộng. 

Theo thống kê mới nhất của Cơ quan nghiên cứu ung thư quốc tế (IACR, thuộc WHO), năm 2020, Việt Nam tăng 7 bậc trên bản đồ ung thư thế giới. Cụ thể, nước ta xếp thứ 92/185 quốc gia vùng lãnh thổ, với tỷ lệ mắc 159,7/100.000 dân, đứng vị trí 16 châu Á và 6 trong khu vực Đông Nam Á. Đặc biệt, Việt Nam là một trong 50 quốc gia có tỉ lệ tử vong do ung thư cao nhất thế giới (106/100.000 dân). 

Ung thư phổi là một trong những nguyên nhân hàng đầu cướp đi sinh mạng của người Việt. Tương tự đối với tình trạng chung trên toàn cầu, tại Việt Nam, ung thư phổi, với 26.262 ca mắc mới và 23.797 ca tử vong trong năm 2020, đã được xếp vị trí thứ 2 trong số các bệnh ung thư mắc nhiều nhất ở cả hai giới tính. Đáng nói, có tới 25% bệnh nhân ung thư phổi được phát hiện muộn, gây khó khăn không nhỏ cho công tác điều trị sau này.

Chẩn đoán sớm và đa dạng loại tổn thương

Để từng bước giải quyết bài toán ung thư phổi, vấn đề cốt lõi là làm sao gia tăng số ca bệnh được chẩn đoán sớm. Một trong những dấu hiệu nhận biết ung thư phổi là tình trạng nhiễm trùng ảnh hưởng đến đường hô hấp và dẫn đến các bệnh như viêm phế quản hoặc các bệnh nhiễm trùng mãn tính khác. Nhiễm trùng phổi mãn tính hoàn toàn có thể được chẩn đoán sớm bằng cách sử dụng X-quang lồng ngực để khoanh vùng tổn thương. Do đó, hiện nay, chụp X-quang lồng ngực là bước đầu tiên để các bác sĩ phát hiện những bất thường, tiến tới thực hiện những can thiệp sâu hơn như chụp cắt lớp vi tính (CT lồng ngực) hay sinh thiết.

Xuất phát từ thực tế trên, các nhà khoa học của Viện Nghiên cứu Dữ liệu lớn VinBigdata, từ tháng 6/2020, đã đưa vào triển khai thử nghiệm VinDr-ChestXR, một trong bảy tính năng thuộc sản phẩm VinDr – nền tảng trí tuệ nhân tạo tích hợp trên hệ thống lưu trữ và truyền tải hình ảnh y tế (PACS) nhằm hỗ trợ bác sĩ chẩn đoán hình ảnh đưa ra quyết định chính xác và nhanh chóng. 

Giao diện của VinDr Chest-XR

Để có thể khoanh vùng và phân loại đa dạng các tổn thương, VinDr-ChestXR được đào tạo từ hơn nửa triệu nghiên cứu X-quang phổi và gần 300,000 ca chụp thực hiện trong cộng đồng, đặc biệt là những bệnh viện lớn của Việt Nam. Dữ liệu sau khi thu thập sẽ được “nặc danh hóa” và lưu trữ trên hệ thống Label-PACS để các bác sĩ truy cập và gán nhãn từ xa. Kết quả cuối cùng phục vụ cho việc đào tạo máy học. Bên cạnh đó, về công nghệ lõi, phần mềm cũng được xây dựng từ các công nghệ tiên tiến thuộc trí tuệ nhân tạo, bao gồm thị giác máy tính, học sâu, phân tích hình ảnh, Computer aided detection và Computer aided diagnosis. 

Nhờ vậy, với riêng VinDr-ChestXR, hệ thống chẩn đoán hỗ trợ bởi AI có thể phát hiện 06 bệnh lý phổi và khoanh vùng 22 loại bất thường phổ biến trên ảnh X-quang lồng ngực. Đây là bước tiền đề quan trọng để xác định nguy cơ và tiến triển của ung thư phổi trên người bệnh.

Sàng lọc ung thư phổi trên diện rộng

Theo thống kê, năm 2020, trung bình cả nước có 1 bác sĩ/1,000 dân, cho thấy tình trạng quá tải bệnh viện và áp lực cực lớn đối với hệ thống nhân viên y tế. Hơn nữa, nguồn nhân lực này phân bố không đồng đều giữa các vùng, các tuyến, dẫn đến gia tăng sự chênh lệch về chất lượng khám, chữa bệnh giữa nông thôn và thành thị. 

Trí tuệ nhân tạo, với sự cộng hưởng của hàng trăm bộ não y khoa hàng đầu cả nước, sẽ trở thành lời giải cho bài toán này. “Nhân bản” trí tuệ của các bác sĩ chẩn đoán ảnh đầu ngành, ứng dụng VinDr-ChestXR sẽ giúp thu hẹp khoảng cách về chất lượng chẩn đoán ung thư giữa bệnh viện tuyến trên và tuyến dưới. Hơn nữa, khác với các bác sĩ chỉ đọc lần lượt từng ca bệnh trong thời gian làm việc, ưu điểm nổi trội của VinDr-ChestXR là khả năng tự động chẩn đoán đồng thời nhiều ca chụp, làm việc suốt ngày đêm với tốc độ và độ chính xác không đổi. Chỉ mất dưới 01 giây, hệ thống đã có thể phát hiện 28 loại tổn thương và bệnh lý phổi phổ biến. Đây chính là mấu chốt để tiến tới giảm tình trạng quá tải của đội ngũ nhân viên y tế, đồng thời kỳ vọng vào việc sớm triển khai sàng lọc ung thư phổi trên diện rộng.

Tính chính xác cao

Triển khai VinDr-ChestXR trong bệnh viện là hoàn toàn khả thi, bởi trí tuệ nhân tạo sẽ không thay thế hoàn toàn vai trò của bác sĩ chẩn đoán hình ảnh, mà sẽ cung cấp thêm một ý kiến để các bác sĩ tham khảo sau khi hoàn thành việc đọc phim. Nói cách khác, hệ thống sẽ là một công cụ hỗ trợ đắc lực, một người cùng hội chẩn với bác sĩ. Do đó, ứng dụng VinDr-ChestXR đồng nghĩa với việc gia tăng mức độ chính xác trong chẩn đoán bệnh.

Thực tế, VinDr-ChestXR đã được triển khai thử nghiệm tại các bệnh viện lớn của Việt Nam: Bệnh viện 108, Bệnh viện ĐH Y Hà Nội, Bệnh viện Vimec Times City và 05 bệnh viện của tỉnh Phú Thọ. Kết quả đánh giá cho thấy tại Bệnh viện 108 trung bình 10,5% số ca chẩn đoán thay đổi sau khi bác sĩ tham khảo AI, độ đồng thuận trung bình của bác sĩ với AI cũng đạt 90,5%. Kết quả này tương đương tại bệnh viện ĐH Y Hà Nội, với các tỉ lệ tương ứng lần lượt là 4,8% và 89,5%. Tính trung bình, độ chính xác trong chẩn đoán các bệnh lý phổi của VinDr-ChestXR đạt trên 90%.

Các tính năng của VinDr

Bên cạnh VinDr-ChestXR, hệ thống cũng được phát triển một tính năng khác có thể chẩn đoán ung thư phổi. Đó là VinDr-ChestCT: chẩn đoán ảnh chụp cắt lớp vi tính (CT) lồng ngực. Hiện VinDr-ChestCT đã được hoàn thiện và sẽ sớm đưa vào triển khai thử nghiệm tại các bệnh viện. Những công cụ này hứa hẹn sẽ từng bước giải quyết triệt để và toàn diện bài toán chẩn đoán sớm ung thư phổi cho người Việt.

Cùng với phát hiện vùng tổn thương và các bệnh lý về phổi, VinDr cũng đang được các nhà nghiên cứu của VinBigdata hoàn thiện tính năng chẩn đoán CT sọ não, CT gan mật,  X-quang xương khớp, X-quang tuyến vú và MRI sọ não. Với những tính năng kể trên, VinDr hướng tới trở thành trợ lý chẩn đoán hình ảnh y tế tin cậy cho các bác sĩ, góp phần nâng cao chất lượng khám chữa bệnh, cải thiện sức khỏe cộng đồng.

Bên cạnh việc đầu tư xây dựng giải pháp VinDr, từ 31/12/2020 – 31/3/2021, Viện Nghiên cứu Dữ liệu lớn VinBigdata tổ chức cuộc thi Phát hiện điểm bất thường trên ảnh X-quang lồng ngực, nhằm chia sẻ bộ dữ liệu 18.000 ảnh y tế thuần Việt để cộng đồng khoa học trong và ngoài nước cùng tìm kiếm, phát triển giải pháp cho những bài toán của y tế Việt Nam. Xem thêm chi tiết cuộc thi tại đây.

Tỉ lệ phụ nữ Việt Nam có tuyến vú đặc thường cao hơn so với các nước Âu – Mỹ, do đó, nguy cơ mắc ung thư vú cũng tăng gấp 4-6 lần. Tuy nhiên, đáng mừng là hiện nay trí tuệ nhân tạo (AI) đã có thể xác định mật độ nhu mô vú, phục vụ công tác chẩn đoán, sàng lọc sớm ung thư.

Tuyến vú được cấu tạo bởi mô xơ liên kết, nhu mô tuyến và tổ chức mỡ. Dựa vào phim chụp X-quang, các bác sĩ có thể xác định bốn loại mật độ nhu mô vú. Theo đó, trong khi 80% phụ nữ Mỹ có mật độ ở mức trung gian giữa mỡ và xơ tuyến; thì tại Việt Nam, do thể trạng nhỏ và ít béo phì, tỉ lệ phụ nữ có vú đặc (phần lớn là xơ tuyến) thường cao hơn, làm tăng nguy cơ mắc các ung thư có liên quan. Theo thống kê của WHO, năm 2020, Việt Nam có tới 21.555 ca mắc mới ung thư vú, trong đó 70% là phát hiện muộn, làm gia tăng đáng kể tỷ lệ tử vong.

Hiện nay, theo Cục quản lý Thực phẩm và Dược phẩm Hoa Kỳ FDA, chụp X-quang tuyến vú là phương pháp duy nhất giúp sàng lọc làm giảm tỷ lệ tử vong do ung thư vú. Ảnh X-quang có thể hiển thị vôi hóa và các khối, đây là những triệu chứng điển hình đầu tiên của ung thư. Phương pháp này vì thế mà được sử dụng cả trong chẩn đoán và sàng lọc, nhằm tầm soát trên diện rộng khi bệnh nhân chưa có biểu hiện cụ thể, hay quan sát tổn thương một cách rõ ràng hơn. 

AI xác định mật độ nhu mô và khoanh vùng tổn thương vú 

Khai thác từ thực tế việc sử dụng X-quang trong ghi hình cấu trúc tuyến vú, nhằm phát hiện sớm tế bào ung thư, các nhà khoa học Viện Nghiên cứu Dữ liệu lớn VinBigdata đã nghiên cứu và phát triển VinDr-Mammo. Đây là một trong bảy tính năng của VinDr – nền tảng trí tuệ nhân tạo tích hợp trên hệ thống lưu trữ và truyền tải hình ảnh y tế (PACS) nhằm hỗ trợ bác sĩ chẩn đoán hình ảnh đưa ra quyết định chính xác, nhanh chóng và giảm thiểu sai sót.

Giao diện VinDr Mammo

Để có khả năng thực hiện đa tác vụ trên ảnh X-quang tuyến vú, VinDr-Mammo được đào tạo từ 50.000 nghiên cứu thu thập tại các bệnh viện lớn trong nước. Trước khi đưa vào huấn luyện học máy, dữ liệu sẽ được “nặc danh hóa” và lưu trữ trên hệ thống Label-PACS để các bác sĩ truy cập và gán nhãn từ xa. Bên cạnh đó, về công nghệ lõi, phần mềm cũng được xây dựng từ các công nghệ tiên tiến thuộc trí tuệ nhân tạo, bao gồm thị giác máy tính, học sâu, phân tích hình ảnh, Computer aided detection và Computer aided diagnosis. 

Kết quả, VinDr-Mammo có thể phân loại mật độ nhu vú, cũng như định vị, khoanh vùng 13 loại tổn thương khác nhau trên phim X-quang vú, với độ chính xác đạt trung bình trên 85% và thời gian chẩn đoán dưới 05 giây cho mỗi ca chụp.

Khi đưa vào triển khai tại bệnh viện, VinDr-Mammo sẽ đóng vai trò là cánh tay phải đắc lực, cung cấp thêm một ý kiến khách quan để các bác sĩ chẩn đoán hình ảnh tham khảo trước khi đưa ra kết quả cuối cùng. Thực tế thử nghiệm tại những bệnh viện lớn trong nước (Bệnh viện 108, Bệnh viện ĐH Y Hà Nội, Bệnh viện Vinmec Times City và 05 bệnh viện tỉnh Phú Thọ) cho thấy trung bình trên 10% số ca chẩn đoán thay đổi kết quả sau khi bác sĩ tham khảo AI. Cùng với đó, độ đồng thuận trung bình của AI với bác sĩ cũng đạt 84% (tại Bệnh viện ĐH Y Hà Nội).

AI hỗ trợ phân loại BIRADS và hướng tới sàng lọc ung thư vú diện rộng

BIRADS (Breast Imaging Reporting and Data System) là hệ thống phân loại kết quả chụp nhũ ảnh tuyến vú theo thang đo có sẵn. Trong đó, BIRADS 1 là không tìm thấy tổn thương; BIRADS 2 và 3 cho kết quả có khả năng cao là tổn thương lành tính. Từ BIRADS 4-6, xác suất xuất hiện u ác tính tăng dần (31-97%). Đây chính là một trong những cơ sở đầu tiên để bác sĩ quyết định có tiến hành sinh thiết, nhằm xác định ung thư vú hay không. 

Hiện nay, với sự hỗ trợ của AI, VinDr-Mammo đã có thể phân loại BIRADS trên ảnh X-quang tuyến vú, hướng tới sàng lọc chính xác nguy cơ ung thư. Hơn nữa, ưu điểm nổi bật của phần mềm là khả năng tự động chẩn đoán đồng thời nhiều ca chụp với tốc độ và độ chính xác không đổi, trong khi mỗi bác sĩ chỉ có thể đọc lần lượt từng ảnh một. Kết hợp lại, đây chính là giải pháp cho hy vọng về việc sàng lọc ung thư vú trên diện rộng, đồng thời đáp ứng nhu cầu lưu trữ và truyền tải bộ dữ liệu ảnh y tế quy mô lớn, tích hợp 2 chiều với các ứng dụng số hóa y tế như HIS/RIS/EMR/PACS/….  

Cùng với phát hiện vùng tổn thương và các bệnh lý về vú, VinDr cũng đang được các nhà nghiên cứu của VinBigdata hoàn thiện tính năng chẩn đoán CT sọ não, CT gan mật,  CT lồng ngực, X-quang xương khớp, X-quang lồng ngực và MRI sọ não. Với những tính năng kể trên, VinDr hướng tới trở thành trợ lý chẩn đoán hình ảnh y tế tin cậy cho các bác sĩ, góp phần nâng cao chất lượng khám chữa bệnh, cải thiện sức khỏe cộng đồng.

Mỗi năm, thế giới có 40 triệu ca chẩn đoán hình ảnh y tế xảy ra sai sót. Vậy làm thế nào để gia tăng cả số lượng và chất lượng chẩn đoán? VinDr – hệ thống trí tuệ nhân tạo cộng hưởng sức mạnh của hàng nghìn bộ não y khoa và hàng trăm nghìn dữ liệu lâm sàng về ảnh y tế, được kì vọng sẽ là lời giải.

Từ bài toán xuất phát điểm 

Theo nghiên cứu của Fortune Business Insights, quy mô thị trường xử lý ảnh y tế trên toàn cầu năm 2019 là 33,69 tỷ USD và dự kiến sẽ cán mốc 43,33 tỷ USD năm 2027. Tỷ lệ tăng trưởng kép hàng năm của thị trường này ước đạt 5,1% xuyên suốt giai đoạn dự đoán. Tổ chức Y tế Thế giới (WHO) cũng ước tính hàng năm có khoảng 3,6 tỷ ca chẩn đoán trên toàn cầu. Thực tế cho thấy, chính phủ các nước đang dành sự quan tâm ngày càng lớn đối với việc theo dõi, sàng lọc sức khỏe dân số, đầu tư cho quy trình phát hiện sớm nguy cơ của bệnh nhằm giảm thiểu chi phí điều trị. Cùng với đó, sự gia tăng tỷ lệ mắc các bệnh cấp và mãn tính bao gồm ung thư, tim mạch và chấn thương chỉnh hình là hai lý do chính thúc đẩy chẩn đoán hình ảnh trở thành một trong những xu hướng phát triển mạnh của y học.

Tại Việt Nam, chẩn đoán sớm và chính xác nhằm phát hiện bệnh, phục vụ công tác điều trị cũng đang là một vấn đề cấp bách, đòi hỏi sự đầu tư nghiêm túc từ chính phủ đến người dân.  Bởi lẽ, năm 2019, tuy xếp thứ 99/185 quốc gia về tỉ lệ mắc bệnh (151,4/100.000 dân), song Việt Nam lại đứng ở vị trí thứ 56 thế giới về tỉ lệ tử vong do ung thư (104,4/100.000 dân) – báo cáo của WHO. Theo các chuyên gia, nguyên nhân dẫn đến tình trạng trên là do hơn 70% ca bệnh ung thư được phát hiện và điều trị muộn. Nếu được chẩn đoán sớm, hiệu quả điều trị có thể lên tới 70% như ở các nước có y tế phát triển.

Thực tế trên đề ra một yêu cầu cấp bách: Làm thế nào để cải thiện số lượng, tốc độ và chất lượng chẩn đoán? Lời giải có lẽ không chỉ nằm ở yếu tố nguồn nhân lực, bởi hiện nay, tỉ lệ lỗi chẩn đoán hình ảnh chiếm từ 3-5% (khoảng 40 triệu ca/năm trên toàn cầu). Hơn nữa, quá tải ca bệnh tại các bệnh viện và tình trạng thiếu bác sĩ đang là bài toán lớn đối với y tế Việt Nam. Vậy, nguồn lực nào sẽ hỗ trợ bác sĩ trong việc chẩn đoán mặt bệnh?

Đến hành trình tìm ra lời giải tối ưu

Theo Cộng đồng chẩn đoán Bắc Mỹ (RSNA), trí tuệ nhân tạo (AI) sẽ là công nghệ đi đầu, là cánh tay đắc lực dành cho các bác sĩ chẩn đoán hình ảnh. Về tốc độ, AI rút ngắn thời gian dành cho quá trình chụp ảnh cộng hưởng từ (MRI), cắt lớp vi tính (CT), cũng như quy trình xử lý hình ảnh, xác định mặt bệnh. Về chất lượng chẩn đoán, nhờ AI có khả năng tổng hợp các yếu tố tiền sử và so sánh tiên lượng với các ca bệnh tương tự trong quá khứ, bệnh nhân có thể nhận được kết quả chính xác và phác đồ điều trị được cá nhân hóa ngay từ lần khám đầu tiên. Bởi những đặc tính trên, rõ ràng, đáp số cho bài toán chẩn đoán hình ảnh y tế nằm ở AI. Thay vì chờ đợi một thế hệ đội ngũ y bác sĩ mới, đủ chất và đủ lượng để đáp ứng yêu cầu ngày càng tăng của bệnh nhân trong việc phát hiện sớm nguy cơ của bệnh, AI sẽ là nguồn lực đủ nhanh, đủ mạnh và đủ bền để liên tục giải quyết các bài toán y tế.

Bắt nguồn từ chính nhận thức trên, VinDr – người học trò chăm chỉ được đào tạo bởi đội ngũ hàng trăm bác sĩ chẩn đoán hình ảnh – từ năm 2018 đã không ngừng tự tối ưu hóa thuật toán AI để cho ra kết quả nhanh và chính xác nhất. Áp dụng các mô hình thị giác máy tính (CV), máy học (ML) và học sâu (DL), VinBigdata xây dựng các hệ thống chẩn đoán có máy tính hỗ trợ (CADx) từ những bộ dữ liệu lâm sàng quy mô lớn (bao gồm nhiều loại hình ảnh y tế khác nhau như X-quang, CT, MRI,…). Kỳ vọng trở thành một giải pháp AI toàn diện cho chẩn đoán hình ảnh y tế, VinDr được phát triển với bảy chức năng chẩn đoán, bao gồm chẩn đoán các bệnh lý phổi trên ảnh X-quang lồng ngực; chẩn đoán ung thư vú trên ảnh X-quang tuyến vú; chẩn đoán X-quang xương khớp; chẩn đoán ung thư phổi trên ảnh cắt lớp (CT); chẩn đoán ung thư gan trên ảnh CT; chẩn đoán đột quỵ não trên ảnh CT; chẩn đoán u não trên ảnh cộng hưởng từ. 

Các tính năng của VinDr

Bên cạnh khả năng chẩn đoán, VinDr cũng có thể tự động khoanh vùng nghi ngờ tổn thương và chỉ ra điểm bất thường với độ chính xác đạt trung bình trên 90%. Nhờ những tính năng trên, VinDr sẽ đóng vai trò tham vấn hội chẩn khách quan, đảm bảo không bỏ sót những chi tiết nhỏ, giúp các bác sĩ có đầy đủ dữ liệu để đưa ra quyết định tốt nhất.

Và sự công nhận của cộng đồng khoa học

Cộng hưởng sức mạnh của hàng nghìn bộ não y khoa, với quá trình đào tạo từ bộ dữ liệu khổng lồ về ảnh y tế, người học trò VinDr đã chứng minh được năng lực tại các cuộc thi uy tín, tầm cỡ quốc tế, như:

Đánh giá về VinDr, Bác sĩ Lê Tuấn Linh, Trưởng khoa Chẩn đoán hình ảnh, bệnh viện Đại học Y Hà Nội cho biết: “Việc phát hiện sớm ung thư thông qua chẩn đoán hình ảnh đóng vai trò quan trọng trong việc điều trị thành công các bệnh nhân ung thư. Ứng dụng AI trong lĩnh vực này tạo ra công cụ hỗ trợ hiệu quả cho các chương trình sàng lọc ung thư hoặc các bệnh nan y khác trong tương lai. Chúng tôi đánh giá hệ thống VinDr có thể đứng Top đầu trong việc hỗ trợ chẩn đoán hình ảnh”.

Với những thành quả trên, VinDr đang trở thành một trong những nguồn lực mới tại các bệnh viện đầu ngành tại Hà Nội và Phú Thọ. Tại Hà Nội, giải pháp được ứng dụng tại Bệnh viện Trung ương Quân đội 108, Bệnh viện Đại học Y Hà Nội và Bệnh viện Đa khoa Quốc tế Vinmec Times City. Tại Phú Thọ, 5 bệnh viện hạng I của tỉnh đang triển khai VinDr là Bệnh viện Đa khoa tỉnh, Bệnh viện Sản Nhi, Trung tâm Y tế huyện Thanh Ba, Trung tâm Y tế huyện Cẩm Khê, Trung tâm Y tế huyện Thanh Thủy.

Cùng với VinDr – giải pháp AI toàn diện cho chẩn đoán hình ảnh y tế, VinBigdata còn nỗ lực cung cấp tới cộng đồng một bộ giải pháp công nghệ tiên tiến (bao gồm cả VinBot và VinGen), nhằm trả lời cho các bài toán phổ biến của y tế toàn cầu và đặc trưng của y tế Việt Nam. Không chỉ hướng tới giải quyết kịp thời, nhanh chóng những mặt tồn tại của ngành y, VinBigdata đặt mục tiêu kiến tạo hướng đi bền vững cho hành trình chăm sóc, bảo vệ sức khỏe của người Việt.